2,315 research outputs found

    KAM for the quantum harmonic oscillator

    Full text link
    In this paper we prove an abstract KAM theorem for infinite dimensional Hamiltonians systems. This result extends previous works of S.B. Kuksin and J. P\"oschel and uses recent techniques of H. Eliasson and S.B. Kuksin. As an application we show that some 1D nonlinear Schr\"odinger equations with harmonic potential admits many quasi-periodic solutions. In a second application we prove the reducibility of the 1D Schr\"odinger equations with the harmonic potential and a quasi periodic in time potential.Comment: 54 pages. To appear in Comm. Math. Phy

    Electrostatic pair creation and recombination in quantum plasmas

    Full text link
    The collective production of electron-positron pairs by electrostatic waves in quantum plasmas is investigated. In particular, a semi-classical governing set of equation for a self-consistent treatment of pair creation by the Schwinger mechanism in a quantum plasma is derived.Comment: 4 pages, 3 figures, to appear in JETP Letter

    New Precision Electroweak Tests in Supergravity Models

    Get PDF
    We update the analysis of the precision electroweak tests in terms of 4 epsilon parameters, ϵ1,2,3,b\epsilon_{1,2,3,b}, to obtain more accurate experimental values of them by taking into account the new LEP data released at the 28th ICHEP (1996, Poland). We also compute ϵ1\epsilon_1 and ϵb\epsilon_b in the context of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model to obtain the updated constraints by imposing the correlated constraints in terms of the experimental ellipses in the ϵ1ϵb\epsilon_1-\epsilon_b plane and also by imposing the new bound on the lightest chargino mass, mχ1±79m_{\chi^\pm_1}\gtrsim 79 GeV GeV. Upon imposing these new experimental results, we find that the situations in the no-scale model are much more favorable than those in the standard model, and if mt170m_t\gtrsim 170 GeV GeV, then the allowed regions at the 95% C.~L. in the no-scale model are tanβ4\tan\beta\gtrsim 4 and mχ1±120(82)m_{\chi^\pm_1}\lesssim 120 (82) GeV GeV for μ>0(μ<0)\mu>0 (\mu<0), which are in fact much more stringent than in our previous analysis. Therefore, assuming that mt170m_t\gtrsim 170 GeV GeV, if the lightest chargino mass bound were to be pushed up only by a few GeV, the sign on the Higgs mixing term μ\mu in the no-scale model could well be determined from the ϵ1ϵb\epsilon_1-\epsilon_b constraint to be positive at the 95% C.~L. At any rate, better accuracy in the measured mtm_t from the Tevatron in the near future combined with the LEP data is most likely to provide a decisive test of the no-scale SU(5)×U(1)SU(5)\times U(1) supergravity model.Comment: 15 pages, REVTEX, 1 figure (not included but available as a ps file from [email protected]

    Spin induced nonlinearities in the electron MHD regime

    Full text link
    We consider the influence of the electron spin on the nonlinear propagation of whistler waves. For this purpose a recently developed electron two-fluid model, where the spin up- and down populations are treated as different fluids, is adapted to the electron MHD regime. We then derive a nonlinear Schrodinger equation for whistler waves, and compare the coefficients of nonlinearity with and without spin effects. The relative importance of spin effects depend on the plasma density and temperature as well as the external magnetic field strength and the wave frequency. The significance of our results to various plasmas are discussed.Comment: 5 page

    Perturbation of an Eigen-Value from a Dense Point Spectrum : An Example

    Get PDF
    We study a perturbed Floquet Hamiltonian K+βVK+\beta V depending on a coupling constant β\beta. The spectrum σ(K)\sigma(K) is assumed to be pure point and dense. We pick up an eigen-value, namely 0σ(K)0\in\sigma(K), and show the existence of a function λ(β)\lambda(\beta) defined on IRI\subset\R such that λ(β)σ(K+βV)\lambda(\beta) \in \sigma(K+\beta V) for all βI\beta\in I, 0 is a point of density for the set II, and the Rayleigh-Schr\"odinger perturbation series represents an asymptotic series for the function λ(β)\lambda(\beta). All ideas are developed and demonstrated when treating an explicit example but some of them are expected to have an essentially wider range of application.Comment: Latex, 24 pages, 51

    Perturbation Theory and Control in Classical or Quantum Mechanics by an Inversion Formula

    Full text link
    We consider a perturbation of an ``integrable'' Hamiltonian and give an expression for the canonical or unitary transformation which ``simplifies'' this perturbed system. The problem is to invert a functional defined on the Lie- algebra of observables. We give a bound for the perturbation in order to solve this inversion. And apply this result to a particular case of the control theory, as a first example, and to the ``quantum adiabatic transformation'', as another example.Comment: Version 8.0. 26 pages, Latex2e, final version published in J. Phys.

    The Maslov index and nondegenerate singularities of integrable systems

    Full text link
    We consider integrable Hamiltonian systems in R^{2n} with integrals of motion F = (F_1,...,F_n) in involution. Nondegenerate singularities are critical points of F where rank dF = n-1 and which have definite linear stability. The set of nondegenerate singularities is a codimension-two symplectic submanifold invariant under the flow. We show that the Maslov index of a closed curve is a sum of contributions +/- 2 from the nondegenerate singularities it is encloses, the sign depending on the local orientation and stability at the singularities. For one-freedom systems this corresponds to the well-known formula for the Poincar\'e index of a closed curve as the oriented difference between the number of elliptic and hyperbolic fixed points enclosed. We also obtain a formula for the Liapunov exponent of invariant (n-1)-dimensional tori in the nondegenerate singular set. Examples include rotationally symmetric n-freedom Hamiltonians, while an application to the periodic Toda chain is described in a companion paper.Comment: 27 pages, 1 figure; published versio

    Singularities, Lax degeneracies and Maslov indices of the periodic Toda chain

    Full text link
    The n-particle periodic Toda chain is a well known example of an integrable but nonseparable Hamiltonian system in R^{2n}. We show that Sigma_k, the k-fold singularities of the Toda chain, ie points where there exist k independent linear relations amongst the gradients of the integrals of motion, coincide with points where there are k (doubly) degenerate eigenvalues of representatives L and Lbar of the two inequivalent classes of Lax matrices (corresponding to degenerate periodic or antiperiodic solutions of the associated second-order difference equation). The singularities are shown to be nondegenerate, so that Sigma_k is a codimension-2k symplectic submanifold. Sigma_k is shown to be of elliptic type, and the frequencies of transverse oscillations under Hamiltonians which fix Sigma_k are computed in terms of spectral data of the Lax matrices. If mu(C) is the (even) Maslov index of a closed curve C in the regular component of R^{2n}, then (-1)^{\mu(C)/2} is given by the product of the holonomies (equal to +/- 1) of the even- (or odd-) indexed eigenvector bundles of L and Lmat.Comment: 25 pages; published versio

    Holder continuity of absolutely continuous spectral measures for one-frequency Schrodinger operators

    Full text link
    We establish sharp results on the modulus of continuity of the distribution of the spectral measure for one-frequency Schrodinger operators with Diophantine frequencies in the region of absolutely continuous spectrum. More precisely, we establish 1/2-Holder continuity near almost reducible energies (an essential support of absolutely continuous spectrum). For non-perturbatively small potentials (and for the almost Mathieu operator with subcritical coupling), our results apply for all energies.Comment: 16 page

    Role of phason-defects on the conductance of a 1-d quasicrystal

    Full text link
    We have studied the influence of a particular kind of phason-defect on the Landauer resistance of a Fibonacci chain. Depending on parameters, we sometimes find the resistance to decrease upon introduction of defect or temperature, a behavior that also appears in real quasicrystalline materials. We demonstrate essential differences between a standard tight-binding model and a full continuous model. In the continuous case, we study the conductance in relation to the underlying chaotic map and its invariant. Close to conducting points, where the invariant vanishes, and in the majority of cases studied, the resistance is found to decrease upon introduction of a defect. Subtle interference effects between a sudden phason-change in the structure and the phase of the wavefunction are also found, and these give rise to resistive behaviors that produce exceedingly simple and regular patterns.Comment: 12 pages, special macros jnl.tex,reforder.tex, eqnorder.tex. arXiv admin note: original tex thoroughly broken, figures missing. Modified so that tex compiles, original renamed .tex.orig in source
    corecore